

Dynamic Structures in Bubbling Gas - Solid Fluidised Beds

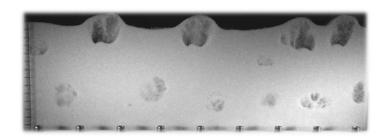
The Local Granular Rheology



a) Structured Fluidization - A Nature Inspired Approach

Dynamic granular structures

Response to a periodic perturbation in the surrounding flow. Wide spatial and temporal scales e.g. tides & waves, gusts & eddies



Pulsed fluidization

 $U_0/Umf = A + B \cdot (1 + \sin(2\pi \cdot f \cdot t))$

- 1. Potential to control, design and scale-up fluidized beds
- 2. Help to understand the fundamental granular flow physics
- 3. A powerful tool to validate computational models

Glass beads, zinc, steel, polystyrene

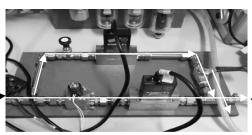
Bronze distributor plate

Fusilli

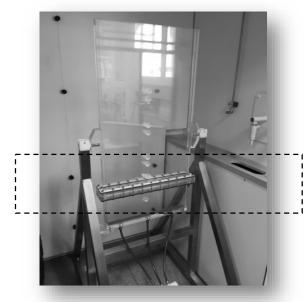
Filtered ambient air

2 parallel lines

Needle Valve - Constant Solenoid Valve - Oscillating



Quasi-2D fluidized bed

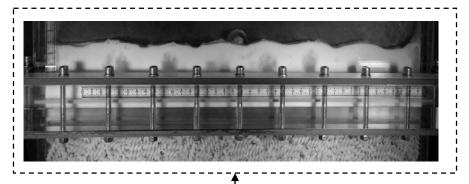


T - 15 mm

W - 450 mm

H - 800 mm

$$U_{o}/Umf = A + B \cdot (1 + \sin(2\pi \cdot f \cdot t))$$



140 mm

800 mm

Glass beads, zinc, steel, polystyrene

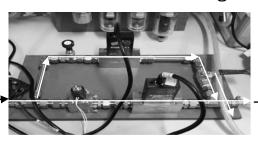
Bronze distributor plate

Fusilli

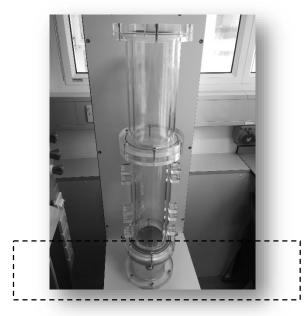
Filtered ambient air

2 parallel lines

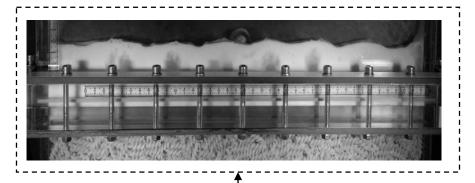
Needle Valve - Constant Solenoid Valve - Oscillating



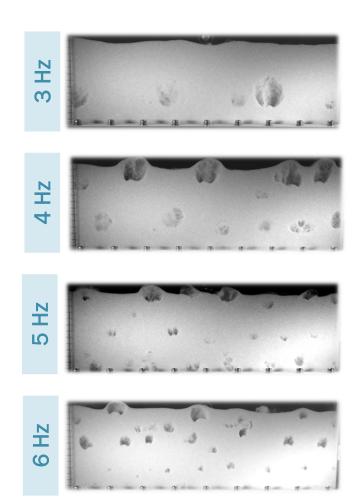
3D fluidized bed

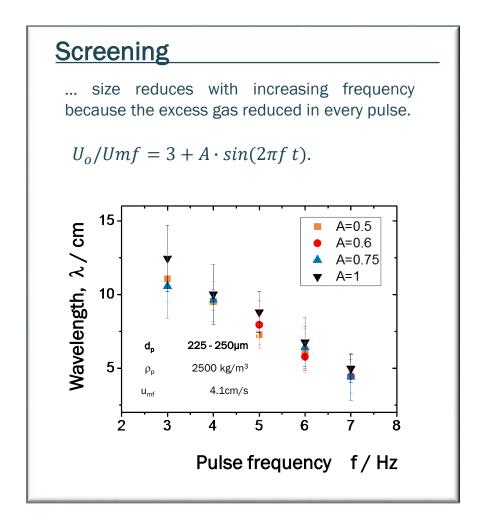


$$U_0/Umf = A + B \cdot (1 + \sin(2\pi \cdot f \cdot t))$$

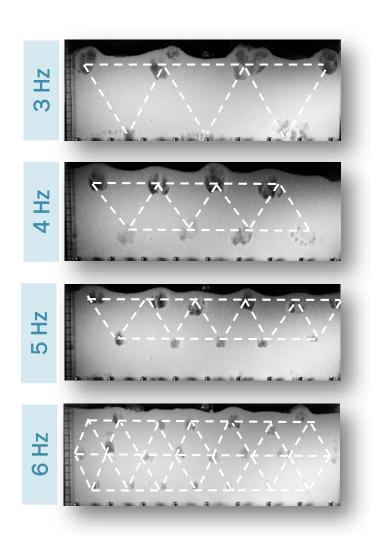


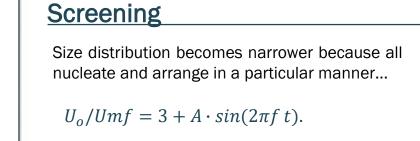
b1- Controlling the bubble dynamics - Arrangement

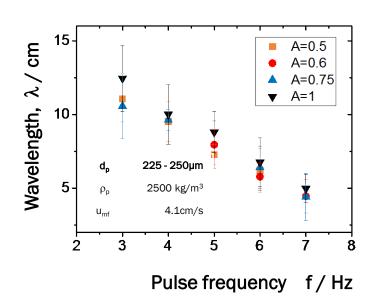




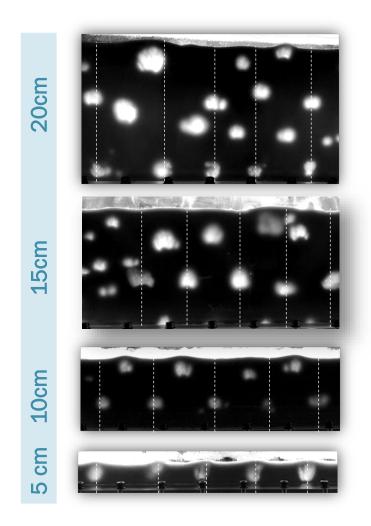
b1- Controlling the bubble dynamics - Arrangement

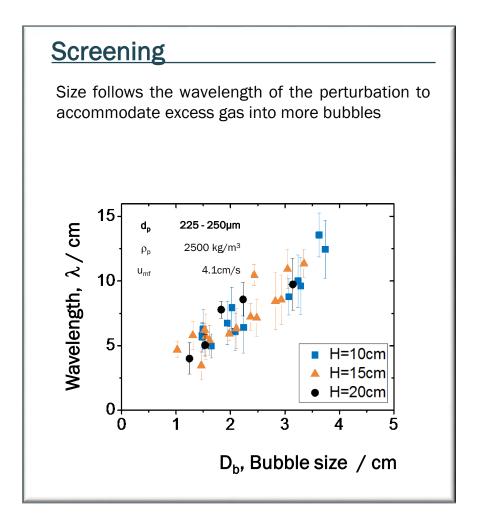






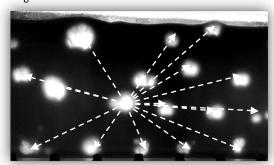
b1- Controlling the bubble dynamics - Size





b1- Controlling the bubble dynamics - Quality

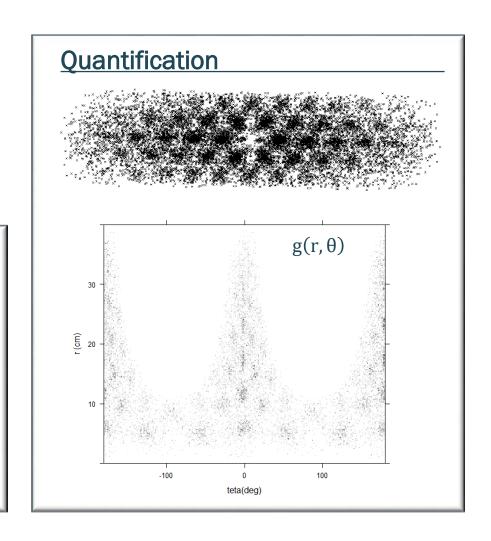
 $D_{h} = 1.55 \text{ cm}$



Looking at the <u>cross correlation</u> of the bubble positions from a Langrangian frame of reference.

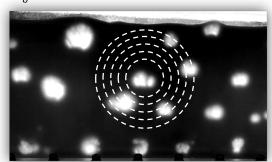
We can use 2D probability density fields to quantify the strength of the local bubble arrangement.

$$P = \int_0^\infty \int_0^{2\pi} g(r, \theta) d\theta dr = 1$$



b1- Controlling the bubble dynamics - RDF

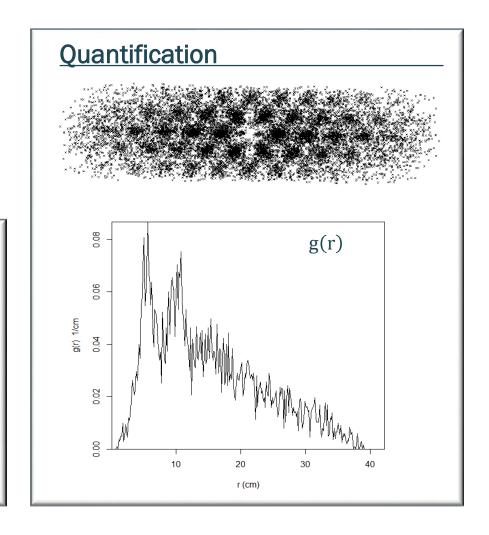
 $D_{h} = 1.55 \text{ cm}$



Looking at the <u>cross correlation</u> of the bubble positions from a Langrangian frame of reference.

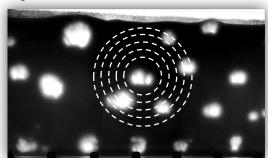
1D probability density fields set the <u>most probable local distances</u> for neighbouring bubbles.

$$g(r) = \int_0^{2\pi} g(r, \theta) d\theta$$



b1- Controlling the bubble dynamics - **1**st Generation

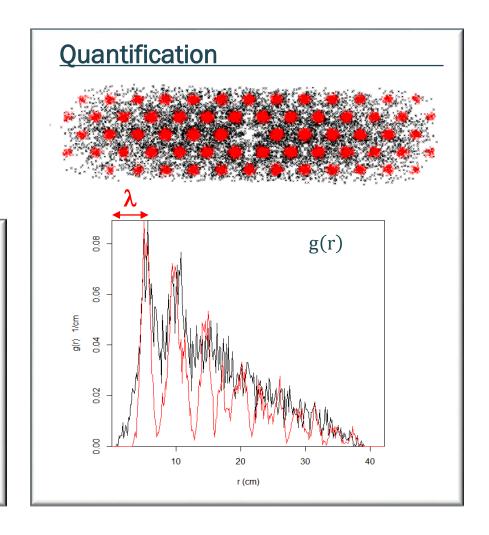
 $D_{\rm b} = 1.55 \, \rm cm$



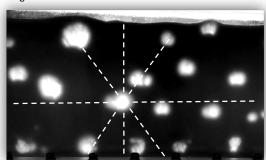
Looking at the **cross correlation** of the bubble positions from a Langrangian frame of reference.

1D probability density fields set the <u>most probable local distances</u> for neighbouring bubbles.

$$g(r) = \int_0^{2\pi} g(r, \theta) d\theta$$



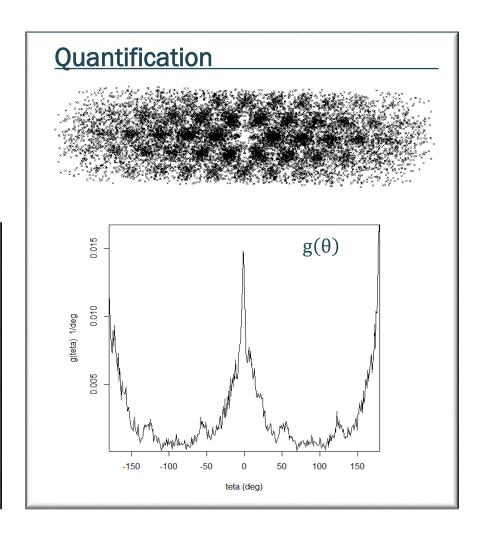
b1- Controlling the bubble dynamics - ADF



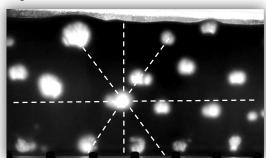
Looking at the <u>cross correlation</u> of the bubble positions from a Langrangian frame of reference.

1D probability density fields set the <u>most probable local angles</u> for neighbouring bubbles.

$$g(\theta) = \int_0^\infty g(r, \theta) dr$$



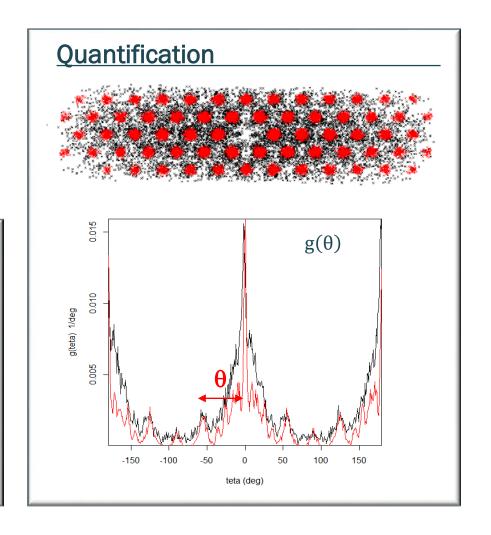
b1- Controlling the bubble dynamics - **1**st Generation



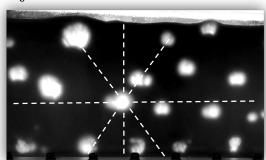
Looking at the <u>cross correlation</u> of the bubble positions from a Langrangian frame of reference.

1D probability density fields set the **most probable local angles** for neighbouring bubbles.

$$g(\theta) = \int_0^\infty g(r, \theta) dr$$



b1- Controlling the bubble dynamics - Optimization

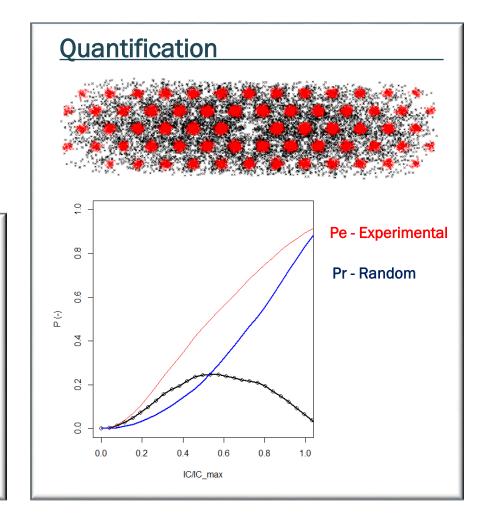


Need to move to a quantitative study of pattern formation. Measurement of local order in the arrangement of the bubbles.

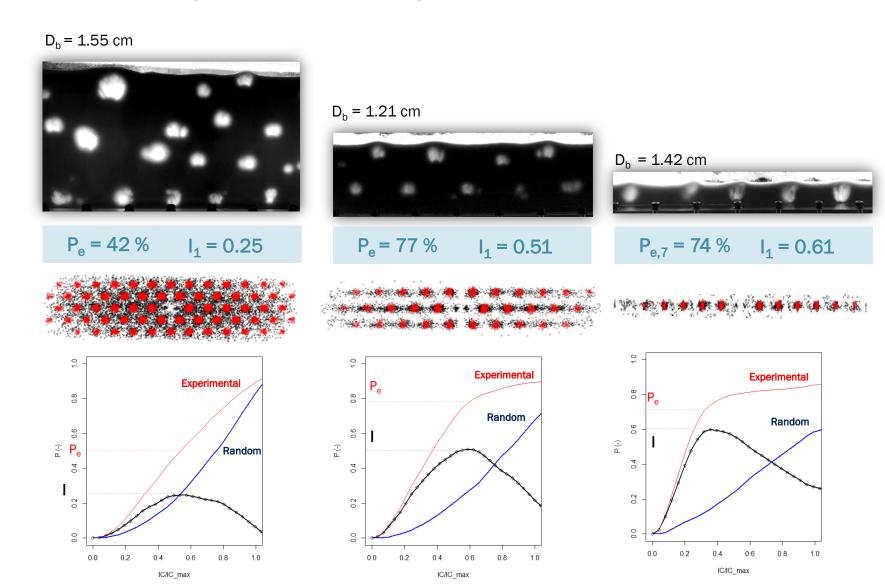
Variance associated to a triangular tessellation of given variability vs that of random placement.

I = 0 Random Placement

I = 1 Triangular tessellation



b1- Controlling the bubble dynamics - Optimization

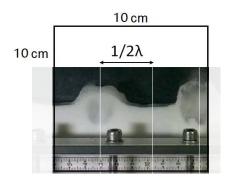


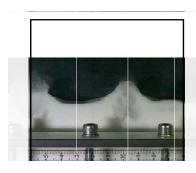
b2-Performance of Kinetic Models

Experimental

High 2D beds Gidaspow – Shaeffer - Lun A classical kinetic formulation can predict well average bubble characteristics while failing to capture the bubble dynamics. 4.5 $u_0/u_{\rm mf} = A + B\sin(2\pi ft)$ 4.0 Bubble size, d_{eq} (cm) 3.5 4.0 3.0 (m) 3.5 2.5-2.0-2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.30 0.35 0.40 0.45 0.50 0.25 2 Amplitude, B (-) Frequency (Hz) Wu et al. *Powder Tech.* 295, 35–42 (2016)

Experimental





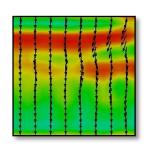
 $D_b = 2.5 \pm 0.2 \text{ cm}$ $\lambda = 6.5 \pm 0.6 \text{ cm}$

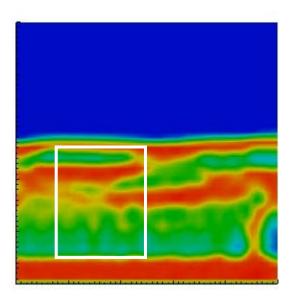
 $U_{\rm o}/Umf = 2.64 + 2.14 \cdot \sin(2\pi f t)$

Low 2D beds -

CFD / DEM

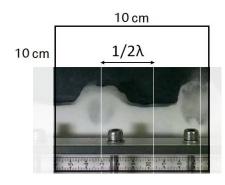
- A dynamic pattern stabilises after a few pulsation cycles.
- Solving the granular rheology, even at the resolution of DEM allows capturing the alternation of the bubble nucleation sites.

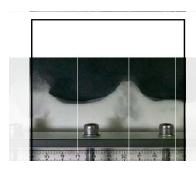




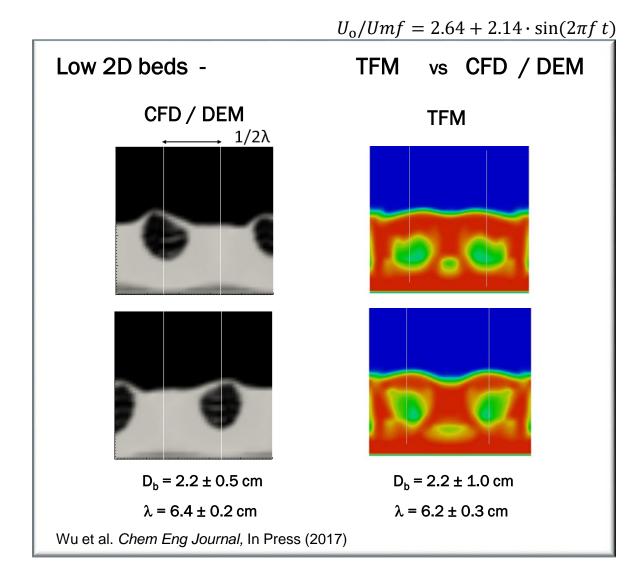
Wu et al. Chem Eng Journal, In Press (2017)

Experimental

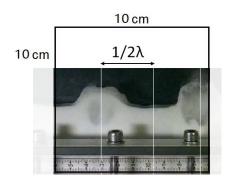


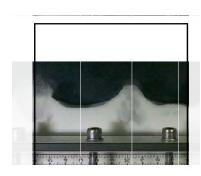


 $D_b = 2.5 \pm 0.2 \text{ cm}$ $\lambda = 6.5 \pm 0.6 \text{ cm}$



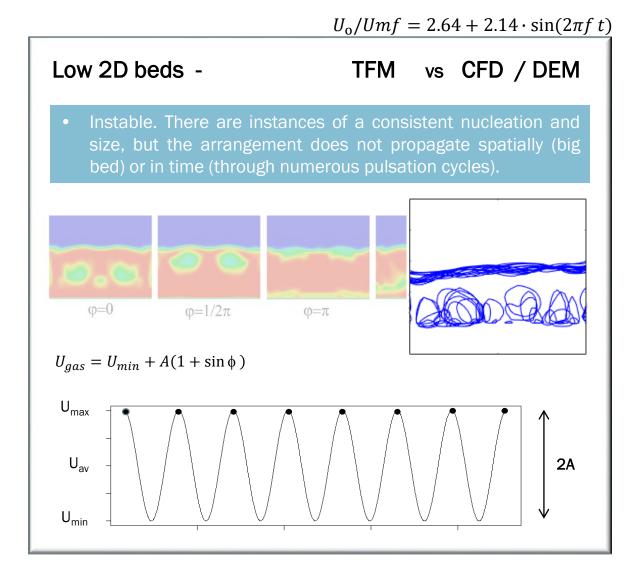
Experimental



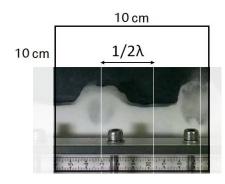


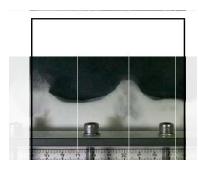
$$D_b = 2.5 \pm 0.2 \text{ cm}$$

 $\lambda = 6.5 \pm 0.6 \text{ cm}$

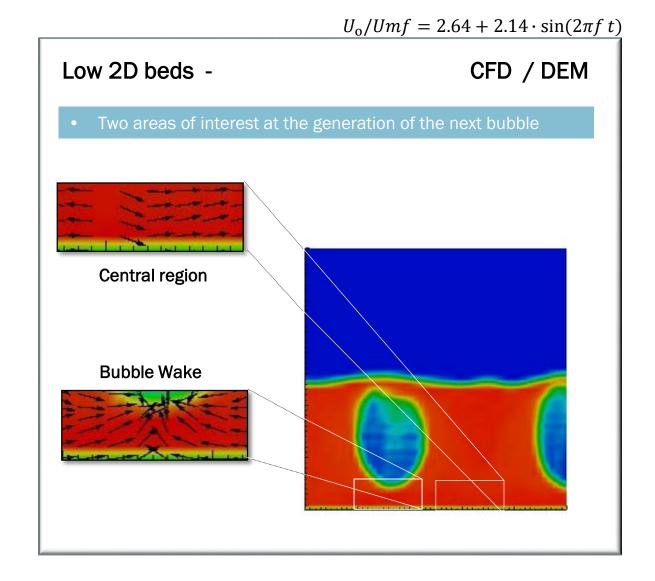


Experimental

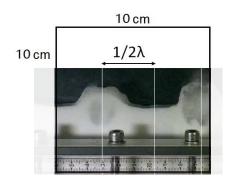


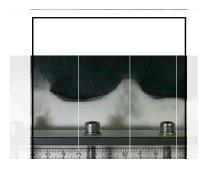


 $D_b = 2.5 \pm 0.2 \text{ cm}$ $\lambda = 6.5 \pm 0.6 \text{ cm}$



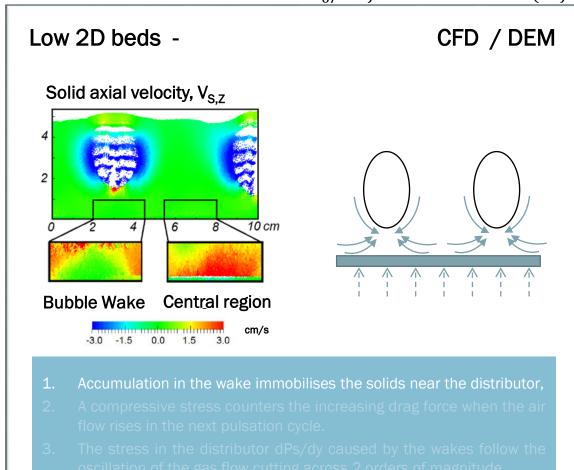
Experimental





 $D_b = 2.5 \pm 0.2 \text{ cm}$ $\lambda = 6.5 \pm 0.6 \text{ cm}$

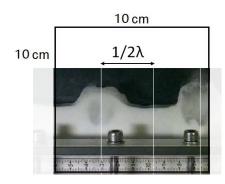
 $U_{\rm o}/Umf = 2.64 + 2.14 \cdot \sin(2\pi f \ t)$

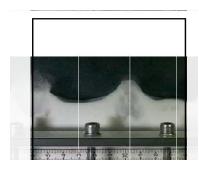


 $U_0/Umf = 2.64 + 2.14 \cdot \sin(2\pi f t)$

b2-Nucleation - TFM vs CFD/DEM

Experimental

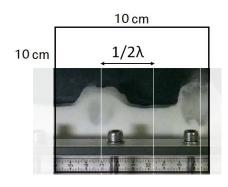


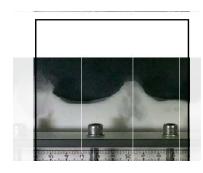


 $D_b = 2.5 \pm 0.2 \text{ cm}$ $\lambda = 6.5 \pm 0.6 \text{ cm}$

Low 2D beds -CFD / DEM Solid axial velocity, V_{S,Z} 10 cm Bubble Wake Central region cm/s Accumulation in the wake immobilises the solids near the distributor.

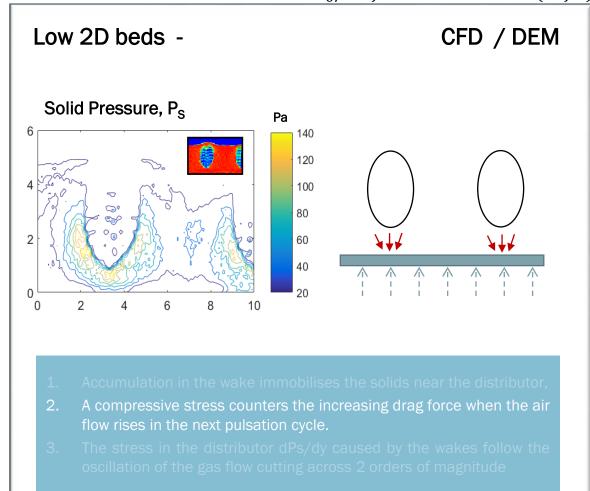
Experimental



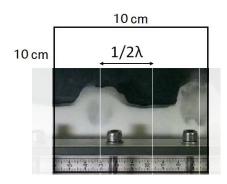


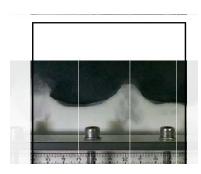
 $D_b = 2.5 \pm 0.2 \text{ cm}$ $\lambda = 6.5 \pm 0.6 \text{ cm}$

 $U_0/Umf = 2.64 + 2.14 \cdot \sin(2\pi f t)$



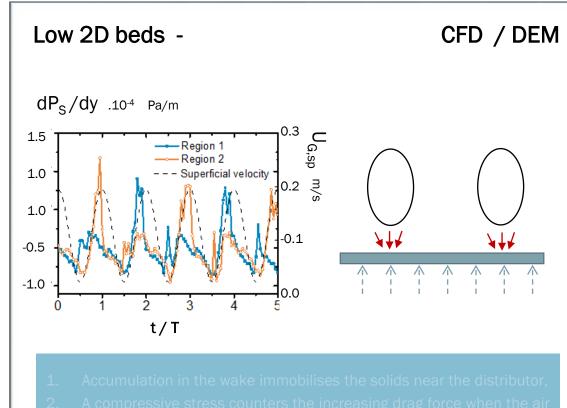
Experimental





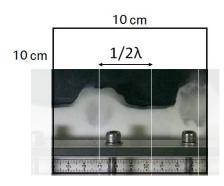
 $D_b = 2.5 \pm 0.2 \text{ cm}$ $\lambda = 6.5 \pm 0.6 \text{ cm}$

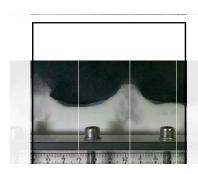
 $U_0/Umf = 2.64 + 2.14 \cdot \sin(2\pi f t)$



- A compressive stress counters the increasing drag force when the air flow rises in the next pulsation cycle.
- 3. The stress in the distributor dPs/dy caused by the wakes follow the oscillation of the gas flow cutting across 2 orders of magnitude

Experimental





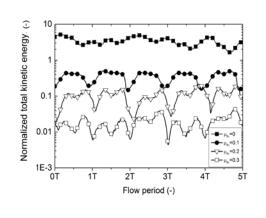
 $D_b = 2.5 \pm 0.2 \text{ cm}$ $\lambda = 6.5 \pm 0.6 \text{ cm}$

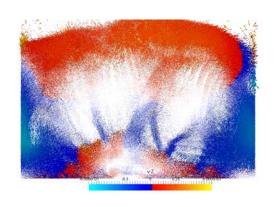
 $U_0/Umf = 2.64 + 2.14 \cdot \sin(2\pi f t)$

Low 2D beds -

CFD / DEM

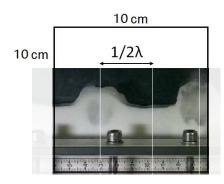
- 1. As friction increases, energy dissipated rises...
- Only after a given point the compressive stress is enough to prevent lateral flow in the wake all the way to the distributor
- 3. Particle-particle friction is key to the bubble-bubble wavelength

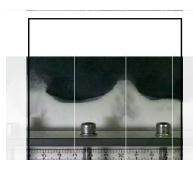




$$\mu_{p-p} = 0$$

Experimental





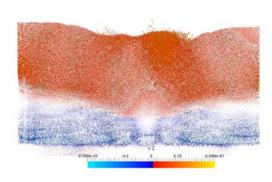
 $D_b = 2.5 \pm 0.2 \text{ cm}$ $\lambda = 6.5 \pm 0.6 \text{ cm}$

 $U_{\rm o}/Umf = 2.64 + 2.14 \cdot \sin(2\pi f t)$

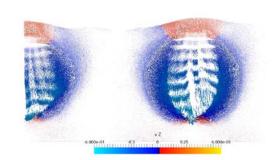
Low 2D beds -

CFD / DEM

- 1. As friction increases, energy dissipated rises...
- Only after a given point the compressive stress is enough to prevent lateral flow in the wake all the way to the distributor
- 3. Particle-particle friction is key to the bubble-bubble wavelength

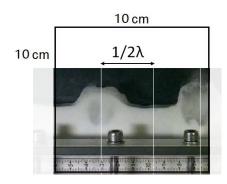


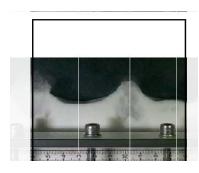
$$\mu_{p-p} = 0.10$$



$$\mu_{p-p} = 0.20$$

Experimental

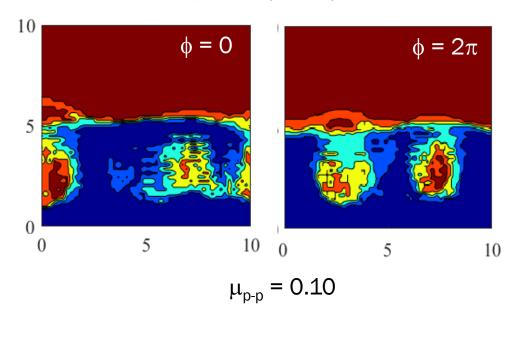




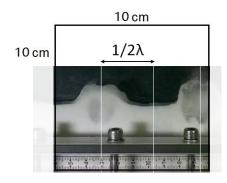
 $D_b = 2.5 \pm 0.2 \text{ cm}$ $\lambda = 6.5 \pm 0.6 \text{ cm}$

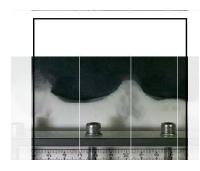
 $U_0/Umf = 2.64 + 2.14 \cdot \sin(2\pi f t)$

- 3. Circulation between both bubbles becomes correlated...
- 4. Nucleation becomes more stable and a pattern emerges



Experimental

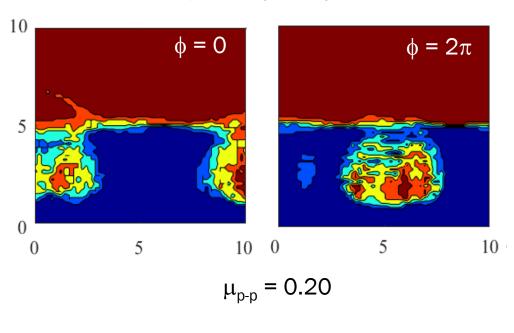




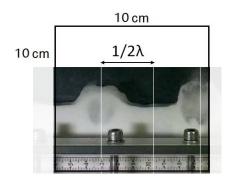
 $D_b = 2.5 \pm 0.2 \text{ cm}$ $\lambda = 6.5 \pm 0.6 \text{ cm}$

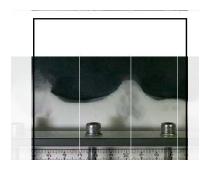
 $U_0/Umf = 2.64 + 2.14 \cdot \sin(2\pi f t)$

- 3. Circulation between both bubbles becomes correlated...
- 4. Nucleation becomes more stable and a pattern emerges



Experimental

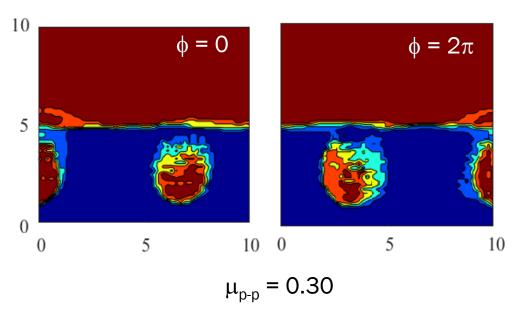




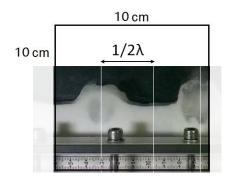
 $D_b = 2.5 \pm 0.2 \text{ cm}$ $\lambda = 6.5 \pm 0.6 \text{ cm}$

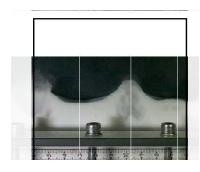
 $U_0/Umf = 2.64 + 2.14 \cdot \sin(2\pi f t)$

- B. Circulation between both bubbles becomes correlated...
- 4. Nucleation becomes more stable and a pattern emerges



Experimental

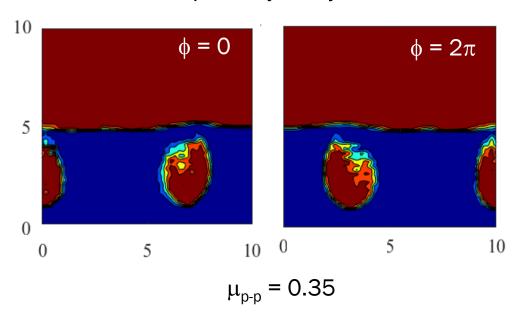




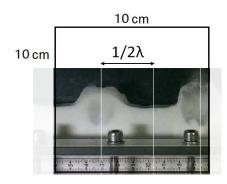
 $D_b = 2.5 \pm 0.2 \text{ cm}$ $\lambda = 6.5 \pm 0.6 \text{ cm}$

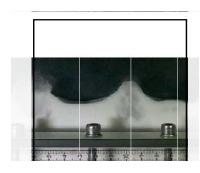
 $U_0/Umf = 2.64 + 2.14 \cdot \sin(2\pi f t)$

- B. Circulation between both bubbles becomes correlated...
- 4. Nucleation becomes more stable and a pattern emerges



Experimental

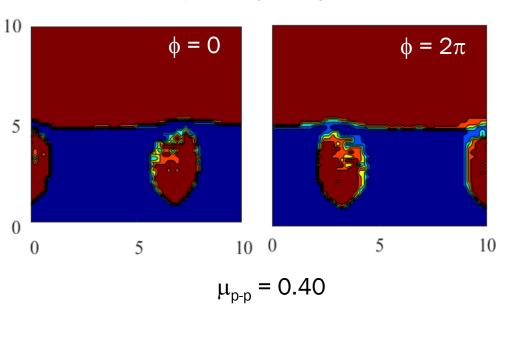




 $D_b = 2.5 \pm 0.2 \text{ cm}$ $\lambda = 6.5 \pm 0.6 \text{ cm}$

 $U_0/Umf = 2.64 + 2.14 \cdot \sin(2\pi f t)$

- B. Circulation between both bubbles becomes correlated...
- 4. Nucleation becomes more stable and a pattern emerges



Take away

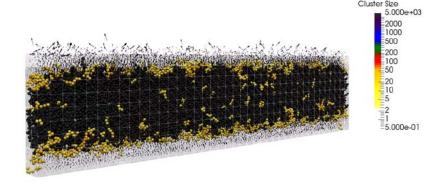
- ❖ <u>Dynamic rearrangement of bubbles</u> occurs experimentally leading to a predictable bubble structure. Wavelength is strongly correlated with the bubble size suggesting a local force balance is behind the arrangement mechanism.
- ❖ TFM classical implementations correctly predict average properties but fail to capture the bubble dynamics under pulsed conditions.
- ❖ <u>CFD/DEM</u> reproduces the observed bubble dynamics The analysis suggests that a compressive force in the bubble wake originates the triangular tessellation
- ❖ The compressive force results from shearing the granular bed in areas of a high solid fraction, and thus is <u>highly sensitive to particle-particle frictional</u> contacts, which are seen to play a key role in the stabilization of the tessellation.

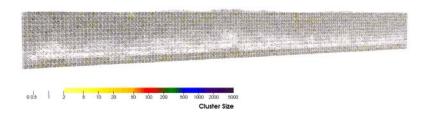
Now - Clustering - Capability development

Migrating to MFIX

MFIX – clustering dynamics

- Identify locked regions.
- Quantify compressive and rotational forces in the plastic regime.
- Find key pivot points in the wake of a rising bubble than 1- ensure nucleation and 2- prevent lateral transport.
- Relate to size and inlet properties
- 1. Recognition of particle clusters.
- 2. Implementation within parallelized framework.
- Tracking clusters properties.
- 4. Map to the Eulerian grid.
- 5. Energy housekeeping.





Now - Kinetic Approach - Chialvo & Sundaresan

Migrating to MFIX

Modified Garzo & Dufty KTGF

- RDF to identify a dynamic jamming.
- e_{eff} to account for frictional losses.
- Rheological model based in an inertial number to bridge into the plastic regime.

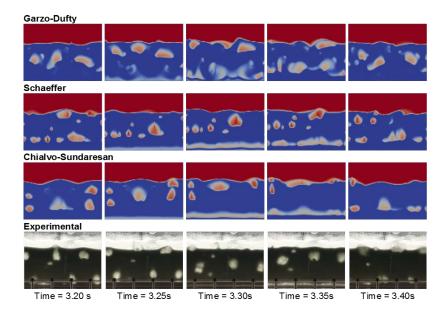
$$\tau = \eta_s \chi_s P_s + \tau_{GD} \, \delta \tau$$

$$\chi_s = 1 - \frac{1}{(I_0/I')^{1.5} + 1} \qquad I' = \gamma d\varepsilon_s \sqrt{p/\rho_s}$$

- Extend from 2D to 3D
- 2. Bingham Papanastasiou
- 3. Unstable nearby τ_s and ε_c with SIMPLE loop
- Corrected boundary conditions TBD

Van Dijk M.

- $^{\rm 1}$ Chialvo S, Sundaresan S. Physics of Fluids 25, 070603 (2013)
- ² Jop, P., Forterre, Y. & Pouliquen, O. A *Nature* **441**, 727-730 (2006)
- ³ da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N. & Chevoir, F. Phy Rev E 72 (2005)
- ⁴ Mitsoulis, E. *Rheology Rev*, 135-178 (2007)



Mr. Kaiqiao Wu

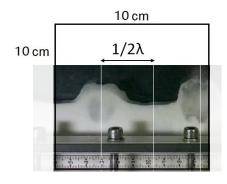
Mr. Mark Van Dijk

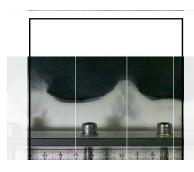
Dr .Victor Francia

Dr. Lilian de Martin

Prof. Marc-Olivier Coppens

Experimental



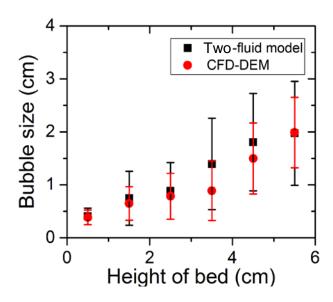


 $D_b = 2.5 \pm 0.2 \text{ cm}$ $\lambda = 6.5 \pm 0.6 \text{ cm}$

 $U_{\rm o}/Umf = 2.64 + 2.14 \cdot \sin(2\pi f t)$

Low 2D beds -

TFM vs CFD / DEM



 In small beds, a kinetic formulation can indeed predict average bubble size throughout the nucleation process,

a) Structured Fluidisation

b) Dynamic bubble flows

b1- Experimental studies.

- I. Pulsating flow.
- II. Stability analysis.

b2- Numerical studies.

- I. Kinetic frames.
- II. CFD/DEM.
- III. Now Migration to MFIX.

a) Structured Fluidization - A Nature Inspired Approach

Predictive ability

Introducing new degrees of freedom at a design stage will enable reducing the instability of gas-solid coupled flow fields.

Acting interaction forces

Particle-particle:

Spatial e.g. electric fields.

Fluid-particle:

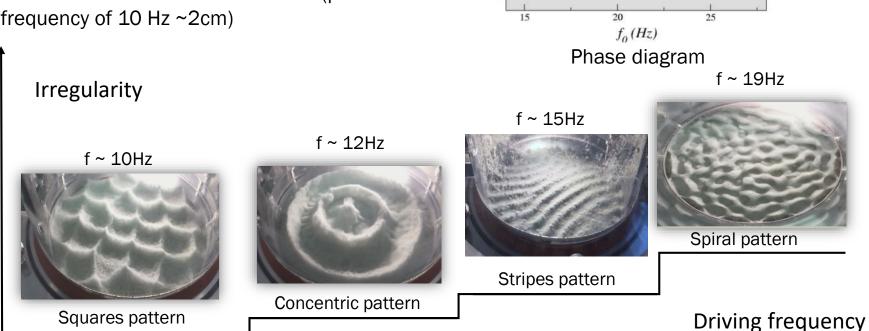
Spatial e.g. fractal injectors

Tempo-spatial e.g. pulsation

3D shallow experimental patterns

2cm height shallow quasi-2D bed

Pattern also forms in a shallow bed (pulse frequency of 10 Hz ~2cm)



+ no pattern

disordered

quasihexs

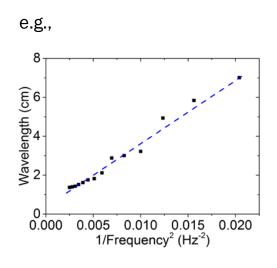
+ flat

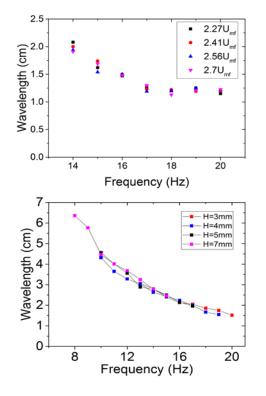
3mm high 238um Ballotini in a 14cm diameter bed

disordered

Characteristic wavelength and onset of pattern

Parameter	wavelength	Onset of pattern
Bed height	No	Yes
Amplitude	No	Yes
Particle diameter	Yes	Yes
Pulsating frequency	Yes, dominating	Yes
Pulsating offset	Yes, but very slightly	Yes





Faraday waves

 The onset of pattern is similar to the surface waves in liquid systems